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EXECUTIVE SUMMARY
The research and development reported here is part of the Technology EnabliedoRiskd

Mai ntenance Strategy project sponsored by the U.S

Sustainability progranilhe primary objective of the research preseirigtlis report is to produce a

technical basis for developing explainable and trustable artificial intelligence (Al) and machine learning
(ML) technologies. The technical basis will lay the foundation for addressing the technical and regulatory
adoption tallenges of Al/ML technologies across plant assets and the nuclear industry at scale and to
achieve seamless cesffective automation without compromising plant safety and reliability.

The technical basis ensuring wider adoption of Al/ML technologiesepited in this report was
developed by Idaho National Laboratory (INL), in collaboration with Public Service Enterprise Group
(PSEG) Nuclear, LLC. To develop the initial technical basis, the circulating water system (CWS) at the
PSEGowned plant sites asselected as the identified plant asset. Specifically, the issue of waterbox
fouling diagnosis in the CWS using different types of CWS data is presented to ddeszsd
challenge. The approach presented in this report is based on thé ldopddrward backward process
that tries to capture the advancements in data science addressing the explainability of AI/ML outcomes,
usercentric interpretability of those outcomes, and how user interpretation can be used as feedback to
further simplify the proces#\ prototype interface is developed to present a focused complewvent
display of the ML model outputs in a usable and digestible form.

The forward procesmoves frondatato-decision and is one of the main parts of research performed
as Al/ML technologis are developed. The forward process entails a rigorous mathematical approach that
accounts for data preprocessidgta integrationtransformation of the data into usable information to
train, validate, and test ML modelsyperparameter optimization bfL models uncertainty
guantification of final outputs by accounting for the accumulation of emmospresentation of the results
tothe enduser. The focus is to explain Al/ML solutions by utilizing objective metrics, such as Local
Interpretable Modehgnostic Explanations arf@hapley Additive Explanationthat can capture the
rigorous mathematics. The focusaometric-based approach is to quantify the effectiveness of the
explanation based on performance differences between the ML models, the ntifebeirres used to
construct the explanation, atite stability of the explanation.

In the backward process, the objective metrics developed as part of the forward process to explain
Al/ML technologiesareverified by the endiser. As part of the backwapdocess, a usarentric
visualization is developed to present Al/ML outcomes with objective metrics and other information to
elicit user interpretatiorBased orelicited input from endisers with different levels of expertise and
functional positios within the organization, the objective metrics and visualizatreadapted to ease
the user interpretation and requirements of Al/ML outcotoésform decision

The technical basis developed in this report will be extended to other fault modes and to a wide user
verifiability study.Forthe nextyear, research will focus on the verification and validation of
explainability and trustworthiness of Al/ML technologiés part ofthe path forwardnovelty
detectio® where the current data are compared to the training dataidentify operating regimes
outside thescope of the modélwill be explored in detailo determine its role in improving ML
trustability.
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TECHNICAL BASIS FOR ADVANCED ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING ADOPTION
IN NUCLEAR POWER PLANTS

1. INTRODUCTION AND MOTIVATION

The primary objective of the research presented in this reporpisdoicea technical basis for
developingexplainableand trustablartificial intelligence (Al)and machine learning (Mltechnologies
The technical basis will lay the foundatitor addressinghe adoption challenges &l /ML technologies
acrosolant assets and the nuclear fleet to achieveimfskmedpredictive maintenance (PdM) strategies
at commercial nuclear power plants (NPE»jer the years, the nuclear flétsrelied onlaborintensve,
time-consumingpreventive maintenance (PMjogramsdriving upoperation and maintenance (O&M)
costs taaclhieve high-capacityfactors. A well-constructed, risknformed PdM approach for an identified
plant asset has been developefll] thattakesadvantage of advancements in data analyfiZ$/L,
physicsinformed modeling, and visualization. These technologies would albowrercial NPPs to
reliably transition fromthe current laborintensivePM prograns to a technologydriven PdM program
(seeFigurel), thuseliminating unnecessary O&M costs.

Labor-centric
Preventive Vachine Learning
Maintenance

1T Y

n=| Paper-based

Periodic
$$$$ Honco
@knNErRGY =

NNNNNNN Energy =
Q@ PSEG \—iul PKMJ Technical \%’*

Services, Inc.

\ J

Figurel. Transition from a PM program to a rigkformed PdM program.

The research and development (R&D) reported here is part of the Technology Enableddris&d
Mai ntenance Strategy (TERMS) project sponsored by
Watea Reactor Sustainability (LWRS) program. The LWRS program is an R&D program conducted in
close partnership with industry to provide the technical foundations for licensing, managing, and
economically operating the current fleet of NPPs. To achieve bogingmnoand pathway goald]] a
series of pilot projects are underway to develop and demonstrate new technologies that can affect
transformative change in NPP opévats and support. The TERMS pilot project on 4iistormed PdM
strategy is developing the necessary technologies and methodology to address the five challenges outlined
below

There are several challenges with research, development, demonstration, ayielegpfat need to
be addressed as plaiansition from a PM program to a rigkformed PdM programrhese include



1 Integrationand synchronization of data collected at different spatial and temporal resohv@ns
several decades

1 Concerns over data lmalance (i.e.a significant amount of data collected when the plant system is
operating under normal condition with no degradationadimdited amount of datare associate
with degradation of the plant system)

1 Scalability of the AI/ML technologieacrass plant systems and the nuclear fteeheet current and
future applicatiorspecific requirements

1 Usercentricvisualizationschemeo enablecrossfacility users to understand the stateplant
systemsandthe plantitself without having to remembend use separatdsualizationsoftware

1 Explainability and trustworthiness of Al/ML technologies enablimgdernization andutomation
across the plant

The research addressitig first fourchallengess covered i 1i 3]. The challeng®f explainability
and trustworthinessf AI/ML tecmologiesis critical for addressingheir technical and regulatory
adoptionacross the nuclear industay scaleandachievingseamlessosteffectiveautomatiorwithout
compromising plant safety and reliabilifijhe technical basisnsuring wider adoptioof Al/ML
technologiepresented in this report was developed by Idaho National Laboratory (INL), in collaboration
with Public Service Enterprise Group (PSEG) Nuclear, LL&develop the initial technical basthe
circulating water system (CWS) at th8 BGowned plant sites were selected as the identified plant asset.
Specifically, the issue of waterbox fouling diagnositheCWS using different types acEWS datds
presented taddressaidchallenge The approactpresented in this repag based on thelosed loop
forward backward process thates tocapture thedvancements data sciencaddressing the
explainability of AI/ML outcomesusercentricinterpretability ofthose outcomesand howuser
interpretatbn can beaised aseedbacko further simplify theprocessA prototypeinterface is developed
to present a focused compondmitel displa of the ML model outputs in a usable and digestible form.

This report is organized as followSection2 presents the forwartbackward closetbop approach to
enhance the possibility @fl/ML adoptionin the nuclear indust anddescribeshe fundamental aspects
of theinitial technical basidgiscusgdin this reportSection3 uses scenarios ttemonstrag how to
improve the intergetability of AI/ML technologies using mets@sthe timeseriesdataevolves over
time, specifically, when dataremissing or when new dataeadded tadhealready trained ML model.
Sectiond describes the creation and evaluatiothefinterfacewith key considerations of explainability
and trustThe testing of the developed interface presenting the lIABMicomesn a semistructured
interview formatwas performedvith monitoring and diagnostic (M&D) analysterving as participants
Sections summarzes research progress and discusses the path forward by highlajfeimgpen
technical challenges.

2. APPROACH ENSURING ADOPTION OF ARTIFICIAL
INTELLIGENCE BASED SOLUTIONS IN NUCLEAR INDUSTRY

Transforming theembeddedknowledgein heterogeneous dasaurcesollectedby NPPsacross
structures, systems, and componémits usable information for decisiemakingby the humasn-the-
loop requiresa systemati@pproach Theapproachmightincludethe use of AI/ML technologiesbut
alwaysfollows thesebasics (1) identification of plant asset of interest; (2) collection of all the relevant
dataassociated with the identified plant systdB) preprocessing of the datéd) extraction of salient
information fom the data; (5) inputting the information and data intoodel (which could baphysics
based model, stochastic modégterministic model, or AI/ML model)6) model outputs; (7)
visualization of outputto be presented to the usand (8) finally, @cisionor action taken by the user.

An example ofa datato-decision roadmageveloped fotherisk-informed PdM strategy is shown in
Figure2. Observein Figure2, the inputiayer presents different data tygbatis related to the CWS of a



PSEGowned power plarend be true for any plant systefhe inputs are broadly categorized into
constantatavalues, periodic data, and reahe data The details of reaime data are presented in
Section3. The riskinformed predictive analytics provide insighto how these different data types are
used for different pumpses and integratedifferent forms ofanalysisperformedoy models and their
integrationcouldlead to different outpst Theintegration otthesemodeloutputsneeds to be simple,
clear, and consistergnsuring the resultant outpatse reproducibland interpretabley the eneuser
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Figure2. Datato-decision roadmap fa riskinformed PdMstrategy

To ensurethe dateto-decision roadmashown inFigure2, is widely adopted by the nuclear industry
to address technical and regulatory concgeangomation witta humanin-the-loop, forward backward
closed loop processan be implemented to ensure consistent results that are interpretablesfu the
users as show in Figure3.
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Figure3. Forwardbackward process to ensusproducibility and interpretability o&l/ML technologies

The forward processioves fromdatato-decision (asn Figure2) and isprimary focusof research
performed by data scientists as tligywelop Al/MLmodels.The forward process entadsigorous



mathemécal appoachthat accounts foidata preprocessingataintegration transformation of the data
into usable information to train, validate, and td&tmodels hyperparameter optimization of ML
models uncertaintyquantificationof final outpus by accounting for thaccumulation of errorand
presentation of results the enduser (as shown iRigure3). In the forward process, withoabnsidering
theenduser, there are variabilitiéstroduced due to data, informati, and models, that influence
outputs. These variabilities include

1 Dataunavailability, inclusion ohew datastreans, changes in operating conditiqrs@ason variations
and others

Feature importance for a particular fault mode

Generalizdility of linear and nodinear ML models(for exampleneural networks, support vector
machines, kernel regressions, random fgiieB), convoluted neural network, etcoptimization of
hyperparametersandchoicebetweersupervised, senrsupervisedandunsupensedML approacles

One of the aspects that also needs to be considered in the forward priweseé toetrain
revalidate, and retesML modelswhentheabovementioned variabilitiesccur in thecurrentdata the
extent (asdetermined by the novelty detectidhpat the base ML modekerformanceneeds to be re
evaluatedIt is important to evaluate these variabilities and determisteategy to revaluate the base
ML model The reevaluaion strategy coulde eitherperiodic on-demandperformancebased, or
triggerbasedased considering thmn percentage change in data.

The focusof this reporis to explainAl/ML solutions by utilizing objectivemetrics that cacapture
the rigorousnathematicsThe use of ametric-based approaddlowsquantifcation ofthe effectiveness
of theexplanatiorbased omerformance differensbetween the ML modelshe number of features used
to construct the explanatioandthe stability of the explanation.

The output values generdtat the end of the forwagptocessareexpected to be used byenduser
in decisionmakingeven ifthey are not readilgnd fully understoodrhis disconnect ixpected tdwurt
the adoption of AI/ML technologies in critical decisiaraking To addresghe technical communication
barriers betweedata scientists and emnersthe backward procedsas beemleveloped as a bridging
approachin the backward procesgction ofthis reportthe objective metrics developed as part of the
forward process to explain Al/ML technologiaverified by the enduser.Note,thatthoughtheend
user verifies the objective metrjczare is takemo ensure thaheverificationd o e s n 6 toms uf f er f
confirmation bias as pointed out irb]. A part of the backward processusercentric visualizations
developed tgresent Al/ML outcomes with objective metricddastherinformation to elicit user
interpretationinput elicitedfrom endusers with different levels of expertise dodctional position
within the organizatiomvill be used to adaphe objective metrics and visualizationetase the user
interpretatiorand requirements @&I/ML outcomesto inform the decision

In thefollowing sectionstheinitial approach taken tbuild a foundation of forwartbackward
closedloop procesdor waterbox foulingn a CWS is presented and dissad.

3. DATA-TO-DECISION CONSIDERATION ENSURING ADOPTION OF
ARTIFICIAL INTELLIGENCE BASED SOLUTIONS

This section will discuss the forward process of how data is used to train, validate, dmeédat
algorithmsfor the case study problewf waterboxfouling. This section details the recorded data, its
variabilities, and the steps used to condition the data. Cleaned data is then usedMh thggithms
(extreme gradient boostinBF, and deep neural networks) for classificatiomaterboxfouling. To
improve the explainability of these models, Shapley Additive Explanations (Slga&)dLocal
Interpretable Modehgnostic Explanations (LIMEY] were impementedThese methods deta&ihch
featureds contribution t o ilityofbowhkhe manel teactedits . | mpr ove
conclusionis critical foracceptance and implementatwithe algorithms



3.1 Waterbox Fouling Issue in Circulating Water System

Waterbox fouling is a commamaintenance issue at tRSEGowned SalenNPPs Fouling of the
waterboxes typically occurs due to the accumulation of grass/debris in the waterbox, thus resulting in
condenser tube blockage and reduced circulator water flow. This is a unique and frequent issue where the
circulating water pumpCWP) intake comes directlfrom the river, resulting in a significant quantity of
grass/debrisPrimarysymptoms ofvaterbox fouling include:

1 Motor current increase (Sometimes seen by motor current decrease, but ot often
{1 Inlet pressure increase

1 Waterbox differential temperaturBT) increase

1 Condenser thermal performance loss.

Figure4 shows an instance afaterbox foulingdiagnosed in the Salem Unit 2\WP 22B. An
upward drift in DT and motor current was identified on July 23, 2018. Consequenilyo#sdoad
started diping. Note inFigure4, the CWP 22B motor current increased from 231 to 245 amps, and DT
increased from 4 to 1& with Gross load not trending as expected. Motoranirand DT decreased to
220 amps and 14, respectivelyfollowing waterbox cleaning on August 25, 2018, resulting in-430
MWe improvement irgross loadThe waterbox fault and approximate date of the shutdown were found
by searching the Wtk Orderandnarrative log informatioprovided by PSEL].
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Figured. An example of changes to the CWS process data before and after waterbox fouling at the
Salemdébs Unit 2 waterbox 22B.

3.2 Data and Variabilities

The Unit 1 and Unit 2 CWS process data are collected once every minute and stored in the Salem
pl ant 6 s O.Dule td¥ile size yesticions, the project team received hourly CWS process data for
both units, from 2009 tdaruary2021. The process data includes:

1 Gross load (MWe)
1 River level (ft)



Ambient air temperaturel)

CWP inlet river temperature (°F)

CWP oulet water temperaturék)

CWP motor status (ON or OFF)

CWP motor statowinding temperature°f)

CWP motorinboardbearing MIB) temperature°f)
CWP motor outboarthearing MOB) temperatureF)

=A =4 =4 =4 4 4 -4 =4

CWP motor currentAmps)

Detailed information about all the data typas be found in our previous wak3]. Figure5 shows
asamplingof CWS process data forSalemunit.

Even though the data is available from 2008, not all the measurements were collected since that time.
The motor current measurement is available from October 20&#&rds, and the online vibration
measurements were collected from 2020 onwards. Other parameters, such as inlet pressure, were
measured senperiodically by hand. Due to the infrequent nature of those measurements, some of these
parameters were excludeaimn the analysis. Additionally, the data collected had outliers, missing values,
bad inputs, duplicate timestamps, daylight saving entries, and text entries. The outliers were identified
using standard deviation and median filtering approaches. The repesethmps and daylight savings
entries were removed and replaced with the missing timestamps. For missing values, a moving average
approach was considered with a window size of 500 to 700 hours to fix continuous missing values. Some
parameters, such as\® MOB temperature, showed a seasonal dependance. In this situation, the
parameter may contain more information about the ambient temperature than the condition of the motor.
More details about the data cleaning can be found in our previous ihrK3.[

From the CWS associated plant process data, the following features are extracted for each pump
motor set:

9 DT, calculated as the difference between the inlet river temperature and thevaterfipx
temperature. The outlet temperature is the combination of multiple pumps because each waterbox is
connected to multiple CWPs.

Inboard, outboard, and stator motor temperatures.

Motor currents (available after September 2017).

3.3 Feature Explainability Metrics

This section covers the SHAP and LIME feature explainability metrics. These metrics are used to
provide an explanation of how each feature contributes to the-black al gor i t hms & out put
data snapshot, these methodscabe used t o explain an individual f e
an entire data set, these methods can be used to
how SHAP and LIME are calculated.

3.3.1  Shapley Additive Explanations (SHAP)

SHAP vdues are a feature additive approach where the output is a linear combinationofahput
SHAP quantifiesthe influence that each input feature has on the gredioutput. Calculating the exact
Shapley values is generally infeasible but calculating the approximate SHAP values can be accomplished
with an explanaitry model. For an inputample otowith O features, the prediction f&@® class isa
linear comination of all the associated SHAP values
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Pump statud)T, and Motor current.
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where’Qw ,0"Qw , and%. arethe output (a.k.a. the logit) value for a fatlie average prediction
value for a faultandassociated SHAP value for each feature, respectifelyordingto Equation(1), a



positive SHAPvalueassociated with a feature indicaitie feature is contributing the predicton of Q
class labelwhereasa negative SHAP valyéndicatesthe feature is contributinig the prediction o&
differentclass,Q Q

3.3.2  Local Interpretable Model -agnostic Explanations (LIME)

LIME attempts tadentify an interpretable model that is locally faithfoithe classiftation modein
question7]. The nterpretableexplanationsneed tdbe presentable amtigestibleto the humasin-the-
loop. The intepretable models a reatively straightforward model, such as a linear model or dedissen
that tries to explaithefeature contributiorior a singlepointin time. Theexplanation™Q from this model
determines thabsence or presence of the interpretable compornEmnseinterpretablecomponents are
problemdependenandwill be differentfor numerical data, texgnd imagesNot all features,
transformations, or combinations of features are readily explainable, so LIME attempts to ensure that the
output is reasonably simple by introducing a measure of compldritted ag ( ¢gThis measire of
complexityis determined by the classiaferpretablenodels, denotedsG. For exampleq ( gan be
the depth of the decision tree or the numberastzero weights for the lineanodel.0 "&G*  is the
measure of how wethatmodel explanatiofiQis approximatinghe probability of belongingto a
certain classQa hin the locality defined by . The LIME is producedy the following

, 0 Qi Qa4 Qb war mGC C

where thdocdity -aware loss functiofh "G is minimized withc onsi der ati on of the
complexity, ( g ) . T hthastheaeasudt is fo@lyy faithful to the classifier antrpretableSince no
assumptions amnade about thg LIME outputs arenodelagnosticIn Equation(2), the locality,” , is

weightwith a distancéunctionsuch as a exponentiakernel as follows,

a  Qanodd 7, o
whereD is the distance functigi is thepoint of interest, 2s randomly sampled from the feature space,

and,, is the width AlthoughLIME is quite usefulit is limited bythe clas®f interpretable models, G,
andmay not be useful if thenderlying model is highlponlineareven in local predictions.

3.4 Machine Learning Models

The extracted parameters from plant processfdan a feature vectabM &, where®is a feature set of
size¢ & . Every feature vector is associated with a class tabedd, where®is label vector of length
¢. The parametes anda are the number of feature vectors and the number of features in a feature
vector, respectivelyThree of thanost commoradvancedL model$ eXtreme Gradient Boosting
(XGBoost) B], RF [9], andDeep Neural Network (DNN)LO]d were considered fopredictingwaterbox
fouling. The details n each of thanodelsare discussed in the following subsectidagther, the
hyperparameteyrsvhich control theprediction performancef each modehrebriefly discussed.

3.4.1 Extreme Gradient Boosting

Gradient boosting refets a class of ensembML algorthmsthat can be used for classification and
regressionA special class of ensemble learning is boosting in wiiéision trees are added one at a
time totheensembleand fit to correct the prediction errors made bigmpmodels.Such boosting models
fit using adifferentiable loss function and gradient desamtimizationarecalled gradient boosting.
XGBoost[8] is anopensourceimplementation of gradient boosting algorithm

342 Random Forest

RF is alsea ML algorithm that can be used for classification and regresisiongh theensemble of
decision treef9]. While a single decisiotreecan besubject to variability and nois&F overcomes these
issues byeneratingnanydecision treeandbootstrappingamples from the training daBootstrapping
involves randonsampling with replacement, sach individual decisioseesa slightlydifferent training



data setThe RF then aggregates the outputs from the many detiegsto produce the final regression

value or classifiation.RF excels because it is easyimplement, accurate, and Hailt-in feature

importance metrics due to the structure of the decisionfReBs. i s readi ly avail abl e
library.

3.4.3 Deep Neural Network

A DNN contains multiple layersf interconnected neurotisat create a complerontlinearmapping
from input to outpufl10Q]. The mappings fit to the data through a process called backpropagativere
the neur on 6 sadaptedo lgpst fit the tainimy dat®NN has been usesliccessfullyfor a wide
variety of applications including classification, natural language processing, and speech recognition.
TensorFlow was the opesource, deefearning library used in this research.

3.4.4  Hyperparameters of ML Models

For XGBoost, the maihyperparameter$] arenumber of estimators (denoted@@i 6 Q& Jp o £ 1 i
G O®NAAAINGE Qe "QAEBOND WD £ & 6 ddaitk & R QR 'Q Qb QA
1 'QQ0 & M1 M6 OEDBYa id byperparameter optimization finds a list of hyperparameters and
associated values that yiedd optimal XGBoost modeFor XGBoost models, the hypsrameter tuning
was done using thieyperopt packagerhich is a combination of grid search and random search
approaches.

For RF, the main hyperparameters are the number of decision trees, maximum depth, and criterion for
measuring the quality of the splé.g.,Gini, entropy, and log loss). Hyperparameter tuning alas
completedusing thehyperopt package.

Determining the optimal hyperparameters and structure for the DNN is more complicated than a
simple grid search as used for XGBoost and Rfs requires determining thrimber of layers, the
number of neurons in each layer, the batch size, number ofefmthinover, whether to include
dropout and how much, validation split, output layer typarning rate, and regularizers. The
hyperparameters used in this research can be s@abliml. The number of epochs used in training
varied based orvalidation accuracy. The DNN continued to train untilwaédation accuracy did not
improvefor five epochs in a row. A sigmoid output layer was ysadthat the output vsaa confidence
value for each classification class (healthy or waterbox foulligying confidence in the classification
was essential fansing LIME. L1 & L2 regularizerswhich represent Lassand Ridge regression,
respectivelywere implemented to prevettte DNN fromoverfitting the training data.

Tablel. DNN parameters

Hyperparameter Value
Number of layers 4

Nodes per layer 128,64,64,1
Batch size 64
Epochs up to 500
Dropout 20%
Validation split 10%
Optimizer Adam
Activation function RelLu
Output Layer Sigmoid
Learning rate 0.01
Loss function Accuracy
L1 & L2 regularizer leb5, le4




3.5 Results

Thewaterbox foulingprediction performanceasanalyzed for eachhodel. The performance of each
modelwasobservedy introducingvariations such asmissing featurer differentinstances ofvaterbox
fouling. All the predictionmodels were further used with SHARME models toprovide local
explanatiorfor each instanceas well as global explanatidor the entire prediction performance.

351 XGBoost Performance

To build the XGBoost binary classification model to predizaterbox foulinglunhealthy, All the CWP
data except CWP 13B was considered as training aladaCWP 13B alamwas considered as test daia.
total of 13768trainingsamples and,366testingsamplesvere usedror the binary classification model,
features suchsdifferential temperaturelOP temperature, MIB temperatuneotor stator temperate,
and motor currenwere consideredihe model performance under differaatenarios of data availability
is discussed in the following sectiofi$ie prediction performanceiasobserved through metrics such as
accuracyprecision(number ofpositive class predictions that actually belong to the positive k;leessall
(number of positive class predictions made out of all positive examples in the )JatadEel-score

z

(balances the concerns of precision and recalzas ).

3511 All the features

Here, it is considered that all the features are available in the trainingrabtiie model is complete
and comprehensivie predictwaterbox fouling For the complete data sattraining acaracy of91.4%
and test accuracy of 89.3% is achievEtke classification performance resuitderms of Precision,
Recall,and Fscoreare showrin Table2, and they indicate the overall performance can be above®0%.
deep mderstandingf the irfluence of each featuie made possible by usinige SHAP model.
Table2. Classification performance results. (All the features are available).

Precision| Recall| F1-score
Healthy | 0.92 091 |0.91

Unhealthy| 0.91 092 |0.91
Average | 0.915 0.915 | 0.91

With the SHAP model, we can understand the influence of each feattire gmediction of healthy
or waterbox fouling. IrfFigure6, asummary plot of SHAP valuder waterbox foulingassociated with
the feature values is shown. Considetggiation(1) with Figures, it is understood that higher vab of
DT, motor stator temperature, and motor current influence the predictiatefbox foulingas they have
positive SHAP valueonverselyMIB tempeaturehasthe opposite trend in which low temperegs
contribute to prediatg waterbox fouling. MDB temperaturdnasa mixed effect on th&HAP valuesboth
highandlow MOB temperaturearesometimesssociated witlvaterbox fouling. This uncertainty is due
to the seasonal impact on the MOB temperature measurements. Considering the overall contributions of
features, DT has beédentified ashe mostsignificant feature in predicting healthy awdterbox fouling
(Figure7). MOB temperatureMIB temperatureand motor current havessimpact on thevaterbox
fouling prediction. It is also important to note that, as per plant engimaetor current is also one of the
major fault signatureBecausehe motor current sometimes increases and sometime deongtises
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waterboxfouling, and naturallyscillates with river temperatudgiringwaterbox fouling, the ML model
is not ableto chaacterizetheimpact ofmotor current onvaterbox fouling prediction.
High

DT [ O .o' II olo -I' e Q@ omee § o> e || +O'
MOB_Temp be - o offeosifop=oele]

MIB_Temp e® | coccnnnow o YD tmeoeme § P oo

Motor_Current . 5 “4.. '

Viotor_Stator_Temp . @s o «e» €[]

.
]
.
Feature value

08 06 04 02 0.0 02 04 06
SHAP value (impact on model output)

Figure6. Featurevalue influence o®HAPvaluesin prediction of Waterbox fouling.
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Figure7. Feature importance for all the features in prediotiaterbox fouling ersushealthy data.

Figure6 andFigure7 provide a global interpretatiqavhich includes all the samples/instances)
method on therediction a local interpretatiofincludes a single instance/sanmpigethodon a single
sampléinstancgusingEquation(1)) is observedhrough waterfall plotin Figure8 for thewaterbox
fouling prediction andrigure9 for the realthy condition predictiorin Figure8, the prediction is
waterbox fouling since theeasure®T is aroundp x tand the motor current islose tothe¢ Qamd 1. i
Similarly, in Figure9, for healthy conditioprediction the MOB temperature sbovep 1t Ttand less
than the maximurnoperating limit Both the motor current anthe DT are within the operating limit3he
color greenin Figure8 andFigure9 means the feature at the measured instance is contributing positively
to a class predictioWhereaghe colorred(shown inlater plots)implies the feature dhe measured
instance is negatively contributing to a particulaiss predictionThus, a local interpretation for an
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instance caperformed using SHAP valués identify thefeatures contributing tthe prediction of
underlying CWP condition.
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Figure9. Local interpretation of an instance correspondirigetaithycondition

3.5.1.2  Missing feature during training

In this section, we consider scenarios of unavailability of cem@asurements during trainiog the
XGBoost modelin the first scenario, DT is missing, in the second scemaoior current is missing, and
in the third scenaridMOB temperature is missinghe effect of feature values tmeir respectivéGHAP
values fao each of the scenarieseshown fromFigurel10to Figure12. When DT is mising, theMOB
temperatureshow significant impact olarger SHAP values (both negatively and positivege
Figure10). Essentially, low or very high MOB:mperatureare associated witlvaterbox fouling A
similar trend can be seerhenmotor currentis missing (se€&igurel1). A higher motor current
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measuremenhdicateswaterbox foulingand low measuremenitsdicatehealthy condition (see
Figurel0andFigurel2). The opposite behavior can be observed for MIB temperatkigsré 10 to
Figure12). On the other handpwer DT and motor stator temperatutiegicate ahealthycondition
However, be influenceof MIB temperatur®n SHAP valuess at the similar rang®r all the three
scenariosThe feature importancaand F1 score performanéa each class prediction for the three
scenarios of missing features duringiningis summarized ifTable3. The F1 scores indicate the
unavailability of DT measurement could significarméduce prediction performance while missingtor
current or MOB temperaturdsgvea marginal effect on the prediction performance.
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Figure10. Feature value influenggvhen feature DT is missingn SHAP values in prediction of
Waterbox fouling.
High

DT .I. I| w  se e -.“-Qm-- “ ---I‘I’
MOB_Temp . -.M— o
MIB_Temp . P --H--I.+.—Q—- o mmem s
Viotor_Stator_Temp . -“—%p-‘—- e o

3 2 1 0 1 2
SHAP value (impact on model output)
Figurell Feature value influence (when featifetor Currentis missing) on SHAP values in prediction
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Figurel2. Feature value influence (when feati®B temperaturés missing) on SHARalues in
prediction ofwaterbox fouling.

Table3. Prediction performance and feature importamegerunavailability of different measurements
during training.

MOB Temp 0.490 0.637
M A A
DT otor Current 0.189 0.169 0.83 0.88
MIB Temp 0.172 0.100
Motor Stator Temp 0.150 0.094
DT 0.623 0.524
MOB Temp 0.168 0.235
Motor Current 0.91 0.89
MIB Temp 0.127 0.120
Motor Stator Temp 0.081 0.120
DT 0.684 0.524
Mot t 112 2
MOB otor Curren 0 0.209 001 0.82
Temperature | MIB Temp 0.133 0.158
Motor Stator Temp 0.070 0.109

3.5.1.3  Missing feature during inference

From the historical plant process datas observed that due &thertechnical or equipment isssje
measurementsight be missingln some cases, the measurements could be missimaysrto weeks.
The XGBoost model enablahke use ofthe pretrained model, which was trained witie complete feature
set,evenin the nstances where features ansssing.Note that, fothe XGBoost model, when a particular
feature is missing, it will beeplaced adlaNbefore inputtingo the modelTo test pediction
performancethreescenariosre consideredsingan instancéDate:201802-02 20:00:00 from thetest
data In the first scenarimo features were missingp the second scenaritheDT featurealoneis

missing in thethird scenaripmotor arrentaloneis missingWith all the features available, the model
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predicted the instance agterbox foulingwith " Qo p&), which is larger than the base value

0" Qw @ 11, Wwith DT being the dominant featu¢seeFigure13). In the second scenario, digethe
missing DT featuréQw 1@ x(seeFigurel14), marginally predicting asaterbox foulingWhereas in
the third casewhen the motor current is missinw  p& (seeFigurel5), predictingaswaterbox
fouling. Thus, when the most significant featsiegemissing, the predictiononfidencdevelreducesas

shown inTable4.
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Figurel3. A test instancé201802-02 20:00:00 corresponding to waterbox foulinghen all the features
are available.
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Table4. SHAP model prediction results for the CWP 13B instance 282 20:00:00or Waterbox
fouling.

None 1.80 0.504 0.94
DT 0.57 0.504 0.68
Motor Current 1.22 0.504 0.82

3.5.2 Random Forest and Deep Neural Network Performance

To buildthe RF and DNN binary classification models to predglaterbox foulingeach pmp in the
CWP datavas considereih thetraining, testing andvalidation data set3.he trainingand testing sets
were divided ito 4 folds based on timgfor cross validationFigure 16 visually shows the 4 fds and the
times inwhich they are splifThetop value mark instanceof waterbox fouling while the bottonshows
examples of healthiabeleddata.To createhe validation data se20% of the training dataseas
separated using a stratifiefddd method. This methal removes sectionfsom training dateor
validation, while preserving treamepercentagef each class both data setfemovingsections of
data preventeverconfidencevhen traininghe DNN modelss points will not baideby-side in time.
Also, preserving th@ercentage of each classthe validatiorset preventthe model fronoverfitting an
overrepresentedlass.For the binary classification modgthe features DT, MOB temperature, MIB
temperature, motor stat@rperature, and motor current were considdvimtiel performance under
different scenarios of data availability is discussed in the following sections.

The RF and DNN were trained and tested using cross validation. However, each fold does not contain
the exact same labels in quantity, spacing, or severity. This led to differences in accuracy between each
fold. Table5 shows the accuracy of the RF when predicting a single fold. Folds 3 and 4 show unique
behavior and are highlighted in yellow. Fold 3 shows a higher testing accuracy than training accuracy,
which indicates that the testing data set was easier to classify or more separation was seen between the
classes. For Fold 4, the RF appears to overfit the training data with a perfect training accuracy, but a less
than average testing accuracy.
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Figurel6. Training and test data were split into time segments with similar amounts of labeled data for
healthy and waterbox fouling data. These time segments became folds for cross validation of the models
performance.

Table5. RF training and testing accuracies with inputs of DT, MOB temperature, and motor current. The
highlighted portion show/an instance of testing data well within the training distribution and an instance
of overfitting.

Fold RF Trainhg Accuracy RF Testing Accuracy
1 0.905 0.842
2 0.917 0.843
3 0.874 0.923
4 1.000 0.825

To compensate for the inherit model variabititywell as the variability in the data, each fold was
trained and testeti0 times for both RF and DNN algorithnhe averageesults and their standard
deviations are shen in Table6. Five features were availabier useincluding DT, MOB temperature,
MIB temperature, motor stator temperature, and motor cufest, all feature were useas inputs. This
led to the highedtainingaccuracies budid not translate to the highdsisting accuracie§econdjust
theDT and motor current were used. This combingtadang withinlet pressurewhich was notwvailable
for this study, containghe primary features thaperatorsurrentlyuse to determine if waterbox fouling
is presentbutproduced belovaverage results aslditional useful information is containgdthe
excluded feature®T, motor current, and MOB temperature weomsidered the tofhreemost
important featuressadetermined by both SHAP and LIME, shownTiable7. This input combination
produced the mostccuratanodelsfor the testing datdNew information was gaineuly includingMOB
temperaturebut it seems like MIB and motor stator temperatures either contain redundant or irrelevant
informationthat did not aid the model as much in classificatttomthis analysis, it seeptthat the
MOB temperaturg@rimarily followed the amt@nt temperatur€eThis can be clearly seenkigurel7as
MOB temperature ishowing a seasonal dependarmsnghotter n summer monthandcooler in winter
months.The useful information contained in this variable may retatee to this seasonality rather tha
anything related to the waterbox fouling conditibself.
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